A. Термоядерные реакции
Термоядерные реакции. Создание и удержание высокотемпературной плазмы. Токамак. Успехи и перспективы развития ядерной энергетики
Термоядерная реакция — это реакция синтеза легких ядер в более тяжелые.
Для ее осуществления необходимо, чтобы исходные нуклоны или легкие ядра сблизились до расстояний, равных или меньших радиуса сферы действия ядерных сил притяжения (т.е. до расстояний ~ 10-15 м). Такому взаимному сближению ядер препятствуют кулоновские силы отталкивания, действующие между положительно заряженными ядрами. Для возникновения реакции синтеза необходимо нагреть вещество большой плотности до сверхвысоких температур (порядка сотен миллионов кельвин), чтобы кинетическая энергия теплового движения ядер оказалась достаточной для преодоления кулоновских сил отталкивания. При таких температурах вещество существует в виде плазмы. Поскольку синтез может происходить только при очень высоких температурах, ядерные реакции синтеза и получили название термоядерных реакций (от греч. therme "тепло, жар").
В термоядерных реакциях выделяется огромная энергия. Например, в реакции синтеза дейтерия с образованием гелия \(~_1^2D + _1^2D \to _2^3He + _0^1n\) выделяется 3,2 МэВ энергии. В реакции синтеза дейтерия с образованием трития \(~_1^2D + _1^2D \to _1^3T + _1^1p\) выделяется 4,0 МэВ энергии, а в реакции \(~_1^2D + _1^3T \to _2^3He + _0^1n\) выделяется 17,6 МэВ энергии. Особенно большое практическое значение имеет тот факт, что при термоядерных реакциях на каждый нуклон выделяется значительно большая энергия, чем при цепных ядерных реакциях. Например, при синтезе ядер гелия из ядер водорода на один нуклон выделяется энергия ~6 МэВ, в то время как при делении ядра урана \(~_{92}^{235}U\) и на один нуклон выделяется энергия ~0,9 МэВ.
Самоподдерживающиеся термоядерные реакции происходят в недрах звезд (в том числе Солнца) и играют важнейшую роль в существовании и развитии Вселенной.
На Земле первая термоядерная реакция была осуществлена при взрыве водородной бомбы. Высокую температуру, необходимую для начала термоядерной реакции, в водородной бомбе получали в результате взрыва входящей в ее состав атомной бомбы, играющей роль детонатора. Термоядерные реакции, происходящие при взрывах водородных бомб, являются неуправляемыми.
Если бы в земных условиях была возможность осуществлять легко управляемые термоядерные реакции, человечество получило бы практически неисчерпаемый источник энергии, так как запасы водорода на Земле огромны. Однако на пути осуществления энергетически выгодных управляемых термоядерных реакций стоят большие технические трудности. Прежде всего необходимо создавать температуры порядка 108 К. Такие сверхвысокие температуры могут быть получены путем создания в плазме электрических разрядов большой мощности.
Этот метод используют в установках типа "Токамак", впервые созданных в Институте атомной энергии им. И. В. Курчатова. В таких установках плазму создают в тороидальной камере, являющейся вторичной обмоткой мощного импульсного трансформатора. Его первичная обмотка подключена к батарее конденсаторов очень большой емкости. Камеру заполняют дейтерием. При разряде батареи конденсаторов через первичную обмотку в тороидальной камере возбуждается вихревое электрическое поле, вызывающее ионизацию дейтерия и появление в нем мощного импульса электрического тока, что приводит к сильному нагреванию газа и образованию высокотемпературной плазмы, в которой может возникнуть термоядерная реакция.
Главная трудность заключается в том, чтобы удержать плазму внутри камеры в течение 0,1—1 с без ее контакта со стенками камеры, поскольку не существует материалов, способных выдерживать столь высокие температуры. Эту трудность удается частично преодолеть с помощью тороидального магнитного поля, в котором находится камера. Под действием магнитных сил плазма скручивается в шнур и как бы "висит" на линиях индукции магнитного поля, не касаясь стенок камеры.
Однако плазма в магнитном поле очень неустойчива и плазменный шнур распадается прежде, чем удается нагреть плазму до нужной температуры. Пока удалось получать плазму с температурой 1,3 \(\cdot\) 107 К и удерживать ее в течение 60—80 мс на установке "Токамак-10". Для увеличения продолжительности существования управляемой термоядерной реакции необходимо увеличивать размеры установки, поэтому в настоящее время строится новая большая установка "Токамак-20".
Использование установок типа "Токамак" (в которых для получения и нагревания плазмы используется мощный электрический разряд, а для удержания плазмы — магнитное поле) является одним из возможных путей осуществления управляемых термоядерных реакций. Другим путем достижения этой цели является лазерный термоядерный синтез. Сущность такого метода состоит в следующем. Замороженную смесь дейтерия и трития, приготовленную в виде шариков диаметром менее 1 мм, равномерно облучают со всех сторон мощным лазерным излучением. Это приводит к нагреванию и испарению вещества с поверхности шариков. При этом давление внутри шариков возрастает до величин порядка 1015 Па. Под действием такого давления происходят увеличение плотности и сильное нагревание вещества в центральной части шариков и начинается термоядерная реакция.
В настоящее время во многих странах мира ведутся интенсивные работы по осуществлению управляемой термоядерной реакции. Имеются обоснованные предположения, что эта проблема будет решена в течение ближайших 20 лет.
Литература
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — С. 626-627.